Quantum Information Processing

Technical University of Munich

Chemistry Department

Lichtenbergstr. 4

85745 Garching

Tel. +49 89 2891 3312


Group Webpage


Research focus: quantum information, quantum optics, quantum nano-systems

Developing quantum optimal control methods is at the interface of theory and experiment. The constructive results have been successfully applied, e.g., in NV centres in diamond, coupled Josephson elements, cavity grids in QED as well as in ion traps.

Given an experimental set-up, which quantum states can be reached from a given initial state in closed and open systems? Which systems can form universal quantum processors? What are the requirements of a quantum system A to simulate another system B?

In the theory group, we aim at a unifying framework of quantum systems theory to answer these questions in a constructive way that helps engineering quantum devices in concrete experimental set-ups (of NV centres, Josephson elements, cavity grids etc). At the same time we use the mathematical rigour and geometric intuition of Lie theory (Fig.1), where, e.g., group (or semigroup) orbits determine reachable sets in closed (or open) systems.

Among the recent achievements, there is an easy-to-use algorithmic platform for numerical optimal quantum control (DYNAMO), first necessary and sufficient symmetry condition for full controllability, a comprehensive symmetry characteri-sation of spin systems, fermionic & bosonic systems, first characterisation of Markovian open quantum systems as Lie semigroups, first parallelized optimal-control based quantum compiler, and first exploitation of switchable noise enabling arbitrary quantum state transfer (Fig.2).

Other recent results include optimal-control based high-fidelity gates for entangling NV centres in diamond as well as optimal-control tools for error-corrected single-shot readout in NV centres (Fig.3) for quantum memories.


Strict positivity and D-majorization

F. vom Ende

Linear & Multilinear Algebra (2020).

Show Abstract

Motivated by quantum thermodynamics, we first investigate the notion of strict positivity, that is, linear maps which map positive definite states to something positive definite again. We show that strict positivity is decided by the action on any full-rank state, and that the image of non-strictly positive maps lives inside a lower-dimensional subalgebra. This implies that the distance of such maps to the identity channel is lower bounded by one. The notion of strict positivity comes in handy when generalizing the majorization ordering on real vectors with respect to a positive vector d to majorization on square matrices with respect to a positive definite matrix D. For the two-dimensional case, we give a characterization of this ordering via finitely many trace norm inequalities and, moreover, investigate some of its order properties. In particular it admits a unique minimal and a maximal element. The latter is unique as well if and only if minimal eigenvalue of D has multiplicity one.

DOI: 10.1080/03081087.2020.1860887

On the Alberti-Uhlmann Condition for Unital Channels

S. Chakraborty, D. Chruscinski, G. Sarbick, F. vom Ende

Quantum 4, (2020).

Show Abstract

We address the problem of existence of completely positive trace preserving (CPTP) maps between two sets of density matrices. We refine the result of Alberti and Uhlmann and derive a necessary and sufficient condition for the existence of a unital channel between two pairs of qubit states which ultimately boils down to three simple inequalities.

DOI: 10.22331/q-2020-11-08-360

Von Neumann Type Trace Inequalities for Schatten-Class Operators

G. Dirr, F. vom Ende

Journal of Operator Theory 84 (2), 323-338 (2020).

Show Abstract

We generalize von Neumann's well-known trace inequality, as well as related eigenvalue inequalities for Hermitian matrices, to Schatten-class operators between complex Hilbert spaces of infinite dimension. To this end, we exploit some recent results on the C-numerical range of Schatten-class operators. For the readers' convenience, we sketched the proof of these results in the Appendix.

DOI: 10.7900/jot.2019jun03.2241

The C-numerical range in infinite dimensions

G. Dirr, F. vom Ende

Linear & Multilinear Algebra 68 (4), 867-868 (2020).

DOI: 10.1080/03081087.2019.1604624

Reachable Sets from Toy Models to Controlled Markovian Quantum Systems

G. Dirr, F. vom Ende, T. Schulte-Herbrüggen

Proc. IEEE Conf. Decision Control 58, 2322 (2020).

Show Abstract

In the framework of bilinear control systems, we present reachable sets of coherently controllable open quantum systems with switchable coupling to a thermal bath of arbitrary temperature T ≥ 0. The core problem boils down to studying points in the standard simplex amenable to two types of controls that can be used interleaved:(i)permutations within the simplex,(ii)contractions by a dissipative one-parameter semigroup. Our work illustrates how the solutions of the core problem pertain to the reachable set of the original controlled Markovian quantum system. We completely characterize the case T = 0 and present inclusions for T > 0.

DOI: 10.1109/CDC40024.2019.9029452

Exploring the Limits of Open Quantum Dynamics I: Motivation, New Results from Toy Models to Applications

T. Schulte-Herbrüggen, F. vom Ende, G. Dirr

Show Abstract

Which quantum states can be reached by controlling open Markovian n-level quantum systems? Here, we address reachable sets of coherently controllable quantum systems with switchable coupling to a thermal bath of temperature T. The core problem reduces to a toy model of studying points in the standard simplex allowing for two types of controls: (i) permutations within the simplex, (ii) contractions by a dissipative semigroup. By illustration, we put the problem into context and show how toy-model solutions pertain to the reachable set of the original controlled Markovian quantum system. Beyond the case T=0 (amplitude damping) we present new results for 0<T<∞ using methods of d-majorisation.


Unitary dilations of discrete-time quantum-dynamical semigroups

F. vom Ende, G. Dirr

Journal of Mathematical Physics 60 (12), 122702 (2019).

Show Abstract

We show that the discrete-time evolution of an open quantum system generated by a single quantum channel T can be embedded in the discrete-time evolution of an enlarged closed quantum system, i.e., we construct a unitary dilation of the discrete-time quantum-dynamical semigroup (????)??∈ℕ0. In the case of a cyclic channel T, the auxiliary space may be chosen (partially) finite-dimensional. We further investigate discrete-time quantum control systems generated by finitely many commuting quantum channels and prove a similar unitary dilation result as in the case of a single channel.

DOI: 10.1063/1.5095868

Reachability in Infinite-Dimensional Unital Open Quantum Systems with Switchable GKS-Lindblad Generators

F. vom Ende, G. Dirr, M. Keyl, T. Schulte-Herbrueggen

Open Systems & Information Dynamics 26 (3), 1950014 (2019).

Show Abstract

In quantum systems theory one of the fundamental problems boils down to: given an initial state, which final states can be reached by the dynamic system in question. Here we consider infinite-dimensional open quantum dynamical systems following a unital Kossakowski-Lindblad master equation extended by controls. More precisely, their time evolution shall be governed by an inevitable potentially unbounded Hamiltonian drift term H-0, finitely many bounded control Hamiltonians H-j allowing for ( at least) piecewise constant control amplitudes u(j) (t) is an element of R plus a bang-bang (i.e., on-off) switchable noise term in Kossakowski-Lindblad form. Generalizing standard majorization results from finite Gamma(V) infinite dimensions, we show that such bilinear quantum control systems allow to approximately reach any target state majorized by the initial one as up to now it only has been known in finite dimensional analogues. The proof of the result is currently limited to the bounded control Hamiltonians H-j and for noise terms Gamma(V) with compact normal V.

DOI: 10.1142/S1230161219500148

Optimal control of hybrid optomechanical systems for generating non-classical states of mechanical motion

V. Bergholm, W. Wieczorek, T. Schulte-Herbrueggen, M. Keyl

Quantum Science and Technology 4 (3), 034001 (2019).

Show Abstract

Cavity optomechanical systems are one of the leading experimental platforms for controlling mechanical motion in the quantum regime. We exemplify that the control over cavity optomechanical systems greatly increases by coupling the cavity also to a two-level system, thereby creating a hybrid optomechanical system. If the two-level system can be driven largely independently of the cavity, we show that the nonlinearity thus introduced enables us to steer the extended system to non-classical target states of the mechanical oscillator with Wigner functions exhibiting significant negative regions. We illustrate how to use optimal control techniques beyond the linear regime to drive the hybrid system from the near ground state into a Fock target state of the mechanical oscillator. We base our numerical optimization on realistic experimental parameters for exemplifying how optimal control enables the preparation of decidedly non-classical target states, where naive control schemes fail. Our results thus pave the way for applying the toolbox of optimal control in hybrid optomechanical systems for generating non-classical mechanical states.

DOI: 10.1088/2058-9565/ab1682

Accept privacy?

Scroll to top