Computational capabilities and compiler development for neutral atom quantum processors-connecting tool developers and hardware experts
L. Schmid, D. F. Locher, M. Rispler, S. Blatt, J. Zeiher, M. Müller, R. Wille
Quantum Science and Technology 9 (3), 33001 (2024).
Neutral Atom Quantum Computing (NAQC) emerges as a promising hardware platform primarily due to its long coherence times and scalability. Additionally, NAQC offers computational advantages encompassing potential long-range connectivity, native multi-qubit gate support, and the ability to physically rearrange qubits with high fidelity. However, for the successful operation of a NAQC processor, one additionally requires new software tools to translate high-level algorithmic descriptions into a hardware executable representation, taking maximal advantage of the hardware capabilities. Realizing new software tools requires a close connection between tool developers and hardware experts to ensure that the corresponding software tools obey the corresponding physical constraints. This work aims to provide a basis to establish this connection by investigating the broad spectrum of capabilities intrinsic to the NAQC platform and its implications on the compilation process. To this end, we first review the physical background of NAQC and derive how it affects the overall compilation process by formulating suitable constraints and figures of merit. We then provide a summary of the compilation process and discuss currently available software tools in this overview. Finally, we present selected case studies and employ the discussed figures of merit to evaluate the different capabilities of NAQC and compare them between two hardware setups.
Observation of Brane Parity Order in Programmable Optical Lattices
D. Wei, D. Adler, K. Srakaew, S. Agrawal, P. Weckesser, I. Bloch, J. Zeiher
Physical Review X 13 (2), 21042 (2023).
The Mott-insulating phase of the two-dimensional (2D) Bose-Hubbard model is expected to be characterized by a nonlocal brane parity order. Parity order captures the presence of microscopic particle-hole fluctuations and entanglement, whose properties depend on the underlying lattice geometry. We realize 2D Bose-Hubbard models in dynamically tunable lattice geometries, using neutral atoms in a passively phase-stable tunable optical lattice in combination with programmable site-blocking potentials. We benchmark the performance of our system by single-particle quantum walks in the square, triangular, kagome, and Lieb lattices. In the strongly correlated regime, we microscopically characterize the geometry dependence of the quantum fluctuations and experimentally validate brane parity as a proxy for the nonlocal order parameter signaling the superfluid-to-Mott-insulating phase transition.
Rydberg Macrodimers: Diatomic Molecules on the Micrometer Scale
S. Hollerith, J. Zeiher
Journal of Physical Chemistry A 127 (18), 3925-3939 (2023).
Controlling molecular binding at the level of single atoms is one of the holy grails of quantum chemistry. Rydberg macrodimers-bound states between highly excited Rydberg atoms -provide a novel perspective in this direction. Resulting from binding potentials formed by the strong, long-range interactions of Rydberg states, Rydberg macrodimers feature bond lengths in the micrometer regime, exceeding those of conventional molecules by orders of magnitude. Using single-atom control in quantum gas microscopes, the unique properties of these exotic states can be studied with unprecedented control, including the response magnetic fields or the polarization of light in their photoassociation. The high accuracy achieved in spectroscopic studies macrodimers makes them an ideal testbed to benchmark Rydberg interactions, with direct relevance to quantum computing and information protocols where these are employed. This review provides a historic overview and summarizes the recent findings in the field of Rydberg macrodimers. Furthermore, it presents new data on interactions between macrodimers, leading to a phenomenon analogous to Rydberg blockade at the level of molecules, opening the path toward studying many-body systems of ultralong-range Rydberg molecules.
A subwavelength atomic array switched by a single Rydberg atom
K. Srakaew, P. Weckesser, S. Hollerith, D. Wei, D. Adler, I. Bloch, J. Zeiher
Nature Physics 19 (5), 7 (2023).
Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science. The cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings, while simultaneously offering access to multiple spatial modes of the light field. Efficient single-mode free-space coupling to such arrays has been reported, but spatial control over the modes of outgoing light fields has remained elusive. Here, we demonstrate such spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space using a single controlled ancilla atom excited to a Rydberg state. The switching behaviour is controlled by the admixture of a small Rydberg fraction to the atomic mirror, and consequently strong dipolar Rydberg interactions with the ancilla. Driving Rabi oscillations on the ancilla atom, we demonstrate coherent control of the transmission and reflection of the array. These results represent a step towards the realization of quantum coherent metasurfaces, the demonstration of controlled atom-photon entanglement and deterministic engineering of quantum states of light. The realization of efficient light-matter interfaces is important for many quantum technologies. An experiment now shows how to coherently switch the collective optical properties of an array of quantum emitters by driving a single ancilla atom to a Rydberg state.
Mid-Circuit Cavity Measurement in a Neutral Atom Array
E. Deist, Y. H. Lu, J. Ho, M. K. Pasha, J. Zeiher, Z. J. Yan, D. M. Stamper-Kurn
Physical Review Letters 129 (20), 203602 (2022).
Subsystem readout during a quantum process, or mid-circuit measurement, is crucial for error correction in quantum computation, simulation, and metrology. Ideal mid-circuit measurement should be faster than the decoherence of the system, high-fidelity, and nondestructive to the unmeasured qubits. Here, we use a strongly coupled optical cavity to read out the state of a single tweezer-trapped 87Rb atom within a small tweezer array. Measuring either atomic fluorescence or the transmission of light through the cavity, we detect both the presence and the state of an atom in the tweezer, within only tens of microseconds, with state preparation and measurement infidelities of roughly 0.5% and atom loss probabilities of around 1%. Using a two-tweezer system, we find measurement on one atom within the cavity causes no observable hyperfine -state decoherence on a second atom located tens of microns from the cavity volume. This high-fidelity mid -circuit readout method is a substantial step toward quantum error correction in neutral atom arrays.
Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion
D. Wei, A. Rubio-Abadal, B. T. Ye, F. Machado, J. Kemp, K. Srakaew, S. Hollerith, J. Rui, S. Gopalakrishnan, N. Y. Yao, I. Bloch, J. Zeiher
Science 376 (6594), 716-+ (2022).
The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, KPZ universality was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg model. We tested this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins. We found that domain-wall relaxation is indeed governed by the KPZ dynamical exponent z = 3/2 and that the occurrence of KPZ scaling requires both integrability and a nonabelian SU(2) symmetry. Finally, we leveraged the single-spin-sensitive detection enabled by the quantum gas microscope to measure an observable based on spin-transport statistics. Our results yield a clear signature of the nonlinearity that is a hallmark of KPZ universality.
Realizing Distance-Selective Interactions in a Rydberg-Dressed Atom Array
S. Hollerith, K. Srakaew, D. Wei, A. Rubio-Abadal, D. Adler, P. Weckesser, A. Kruckenhauser, V. Walther, R. van Bijnen, J. Rui, C. Gross, I. Bloch, J. Zeiher
Physical Review Letters 128 (11), 113602 (2022).
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement.
Superresolution Microscopy of Optical Fields Using Tweezer-Trapped Single Atoms
E. Deist, J. A. Gerber, Y. H. Lu, J. Zeiher, D. M. Stamper-Kurn
Physical Review Letters 128 (8), 83201 (2022).
We realize a scanning probe microscope using single trapped Rb-87 atoms to measure optical fields with subwavelength spatial resolution. Our microscope operates by detecting fluorescence from a single atom driven by near-resonant light and determining the ac Stark shift of an atomic transition from other local optical fields via the change in the fluorescence rate. We benchmark the microscope by measuring two standing-wave Gaussian modes of a Fabry-Perot resonator with optical wavelengths of 1560 and 781 nm. We attain a spatial resolution of 300 nm, which is superresolving compared to the limit set by the 780 nm wavelength of the detected light. Sensitivity to short length scale features is enhanced by adapting the sensor to characterize an optical field via the force it exerts on the atom.
Microscopic electronic structure tomography of Rydberg macrodimers
S. Hollerith, J. Rui, A. Rubio-Abadal, K. Srakaew, D. Wei, J. Zeiher, C. Gross, I. Bloch
Physical Review Research 3 (1), 13252 (2021).
Precise control and study of molecules is challenging due to the variety of internal degrees of freedom and local coordinates that are typically not controlled in an experiment. Employing quantum gas microscopy to position and resolve the atoms in Rydberg macrodimer states solves most of these challenges and enables unique access to the molecular frame. Here, we demonstrate this approach and present photoassociation studies in which the molecular orientation relative to an applied magnetic field, the polarization of the excitation light, and the initial atomic state are fully controlled. The observed dependencies allow for an electronic structure tomography of the molecular state. We additionally observe an orientation-dependent Zeeman shift, and we reveal a significant influence on it caused by the hyperfine interaction of the macrodimer state. Finally, we demonstrate control over the electrostatic binding potential by engineering a gap between two crossing pair potentials. Our results establish macrodimers as the most sensitive tool to benchmark Rydberg interaction potentials, and they open new perspectives for improving Rydberg dressing schemes.
A subradiant optical mirror formed by a single structured atomic layer
J. Rui, D. V. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn, C. Gross, I. Bloch
Nature 583 (7816), 369-+ (2020).
Versatile interfaces with strong and tunable light-matter interactions are essential for quantum science(1)because they enable mapping of quantum properties between light and matter(1). Recent studies(2-10)have proposed a method of controlling light-matter interactions using the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. However, a key aspect of this approach-the cooperative enhancement of the light-matter coupling strength and the directional mirror reflection of the incoming light using an array of quantum emitters-has not yet been experimentally demonstrated. Here we report the direct observation of the cooperative subradiant response of a two-dimensional square array of atoms in an optical lattice. We observe a spectral narrowing of the collective atomic response well below the quantum-limited decay of individual atoms into free space. Through spatially resolved spectroscopic measurements, we show that the array acts as an efficient mirror formed by a single monolayer of a few hundred atoms. By tuning the atom density in the array and changing the ordering of the particles, we are able to control the cooperative response of the array and elucidate the effect of the interplay of spatial order and dipolar interactions on the collective properties of the ensemble. Bloch oscillations of the atoms outside the array enable us to dynamically control the reflectivity of the atomic mirror. Our work demonstrates efficient optical metamaterial engineering based on structured ensembles of atoms(4,8,9)and paves the way towards controlling many-body physics with light(5,6,11)and light-matter interfaces at the single-quantum level(7,10). A single two-dimensional array of atoms trapped in an optical lattice shows a tunable cooperative subradiant optical response, acting as a single-monolayer optical mirror with controllable reflectivity.