Johannes Knolle

Theory of Quantum Matter and Nanophysics

Technical University of Munich

Department of Physics

James-Franck-Straße 1

85748 Garching

Tel. +49 89 289 12402


Group Webpage

It is fascinating to gain a deeper understanding of the fundamental principles driving quantum phases of matter, which has also practical relevance for future quantum technology.


Research focus: theory of quantum matter, condensed matter systems

Our research has been centred around one of the great topics of modern physics — the search for unconventional quantum phases in correlated materials, e.g. Quantum Spin Liquids, Unconventional Superconductors or Topological Kondo Insulators. The underlying theme of our work is to bridge the gap between novel theories and actual experiments. Advances in the theory of topological phases of matter happen in parallel to developments in materials science. Our group combines both lines of research which is crucial for new discoveries. Our aim is to transfer abstract mathematics to experimentally relevant situations.


Anomalous Quantum Oscillations in a Heterostructure of Graphene on a Proximate Quantum Spin Liquid

V. Leeb, K. Polyudov, S. Mashhadi, S. Biswas, R. Valenti, M. Burghard, J. Knolle

Physical Review Letters 126 (9), 097201 (2021).

Show Abstract

The quasi-two-dimensional Mott insulator alpha-RuCl3 is proximate to the sought-after Kitaev quantum spin liquid (QSL). In a layer of alpha-RuCl3 on graphene, the dominant Kitaev exchange is further enhanced by strain. Recently, quantum oscillation (QO) measurements of such alpha-RuCl3 and graphene heterostructures showed an anomalous temperature dependence beyond the standard Lifshitz-Kosevich (LK) description. Here, we develop a theory of anomalous QO in an effective Kitaev-Kondo lattice model in which the itinerant electrons of the graphene layer interact with the correlated magnetic layer via spin interactions. At low temperatures, a heavy Fermi liquid emerges such that the neutral Majorana fermion excitations of the Kitaev QSL acquire charge by hybridizing with the graphene Dirac band. Using ab initio calculations to determine the parameters of our low-energy model, we provide a microscopic theory of anomalous QOs with a non-LK temperature dependence consistent with our measurements. We show how remnants of fractionalized spin excitations can give rise to characteristic signatures in QO experiments.

DOI: 10.1103/PhysRevLett.126.097201

Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid

W.H. Kao, J. Knolle, G.B. Halasz, R. Moessner, N.B. Perkins

Physical Review X 11 (1), 011034 (2021).

Show Abstract

The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6.

DOI: 10.1103/PhysRevX.11.011034

Seasonal epidemic spreading on small-world networks: Biennial outbreaks and classical discrete time crystals

D. Malz, A. Pizzi, A. Nunnenkamp, J. Knolle

Physical Review Research 3, 013124 (2021).

Show Abstract

We study seasonal epidemic spreading in a susceptible-infected-removed-susceptible model on small-world graphs. We derive a mean-field description that accurately captures the salient features of the model, most notably a phase transition between annual and biennial outbreaks. A numerical scaling analysis exhibits a diverging autocorrelation time in the thermodynamic limit, which confirms the presence of a classical discrete time crystalline phase. We derive the phase diagram of the model both from mean-field theory and from numerics. Our paper demonstrates that small worldness and non-Markovianity can stabilize a classical discrete time crystal, and links recent efforts to understand such dynamical phases of matter to the century-old problem of biennial epidemics.

DOI: 10.1103/PhysRevResearch.3.013124

Random Multipolar Driving: Tunably Slow Heating through Spectral Engineering

H.Z. Zhao, F. Mintert, R. Moessner, J. Knolle

Physical Review Letters 126 (4), 040601 (2021).

Show Abstract

Driven quantum systems may realize novel phenomena absent in static systems, but driving-induced heating can limit the timescale on which these persist. We study heating in interacting quantum many-body systems driven by random sequences with n-multipolar correlations, corresponding to a polynomially suppressed low-frequency spectrum. For n >= 1, we find a prethermal regime, the lifetime of which grows algebraically with the driving rate, with exponent 2n + 1. A simple theory based on Fermi's golden rule accounts for this behavior. The quasiperiodic Thue-Morse sequence corresponds to the n -> infinity limit and, accordingly, exhibits an exponentially long-lived prethermal regime. Despite the absence of periodicity in the drive, and in spite of its eventual heat death, the prethermal regime can host versatile nonequilibrium phases, which we illustrate with a random multipolar discrete time crystal.

DOI: 10.1103/PhysRevLett.126.040601

Time crystallinity and finite-size effects in clean Floquet systems

A. Pizzi, D. Malz, G. De Tomasi, J. Knolle, A. Nunnenkamp

Physical Review B 102 (21), 214207 (2020).

Show Abstract

A cornerstone assumption that most literature on discrete time crystals has relied on is that homogeneous Floquet systems generally heat to a featureless infinite temperature state, an expectation that motivated researchers in the field to mostly focus on many-body localized systems. Some works have, however, shown that the standard diagnostics for time crystallinity apply equally well to clean settings without disorder. This fact raises the question whether a homogeneous discrete time crystal is possible in which the originally expected heating is evaded. Studying both a localized and an homogeneous model with short-range interactions, we clarify this issue showing explicitly the key differences between the two cases. On the one hand, our careful scaling analysis confirms that, in the thermodynamic limit and in contrast to localized discrete time crystals, homogeneous systems indeed heat. On the other hand, we show that, thanks to a mechanism reminiscent of quantum scars, finite-size homogeneous systems can still exhibit very crisp signatures of time crystallinity. A subharmonic response can in fact persist over timescales that are much larger than those set by the integrability-breaking terms, with thermalization possibly occurring only at very large system sizes (e.g., of hundreds of spins). Beyond clarifying the emergence of heating in disorder-free systems, our work casts a spotlight on finite-size homogeneous systems as prime candidates for the experimental implementation of nontrivial out-of-equilibrium physics.

DOI: 10.1103/PhysRevB.102.214207

Magneto-optical conductivity in generic Weyl semimetals

M. Stalhammar, J. Larana-Aragon, J. Knolle, E.J. Bergholtz

Physical Review B 102 (23), 235134 (2020).

Show Abstract

Magneto-optical studies of Weyl semimetals have been proposed as a versatile tool for observing low-energy Weyl fermions in candidate materials including the chiral Landau level. However, previous theoretical results have been restricted to the linearized regime around the Weyl node and are at odds with experimental findings. Here, we derive a closed form expression for the magneto-optical conductivity of generic Weyl semimetals in the presence of an external magnetic field aligned with the tilt of the spectrum. The systems are taken to have linear dispersion in two directions, while the tilting direction can consist of any arbitrary continuously differentiable function. This general calculation is then used to analytically evaluate the magneto-optical conductivity of Weyl semimetals expanded to cubic order in momentum. In particular, systems with arbitrary tilt, as well as systems hosting trivial Fermi pockets are investigated. The higher-order terms in momentum close the Fermi pockets in the type-II regime, removing the need for unphysical cutoffs when evaluating the magneto-optical conductivity. Crucially, the ability to take into account closed over-tilted and additional trivial Fermi pockets allows us to treat model systems closer to actual materials and we propose a simple explanation why the presence of parasitic trivial Fermi pockets can mask the characteristic signature of Weyl fermions in magneto-optical conductivity measurements.

DOI: 10.1103/PhysRevB.102.235134

Local probes for charge-neutral edge states in two-dimensional quantum magnets

J. Feldmeier, W. Natori, M. Knap, J. Knolle

Physical Review B 102 (13), 134423 (2020).

Show Abstract

The bulk-boundary correspondence is a defining feature of topological states of matter. However, for quantum magnets in two dimensions such as spin liquids or topological magnon insulators, a direct observation of topological surface states has proven challenging because of the charge-neutral character of the excitations. Here we propose spin-polarized scanning tunneling microscopy as a spin-sensitive local probe to provide direct information about charge-neutral topological edge states. We show how their signatures, imprinted in the local structure factor, can be extracted by specifically employing the strengths of existing technologies. As our main example, we determine the dynamical spin correlations of the Kitaev honeycomb model with open boundaries. We show that by contrasting conductance measurements of bulk and edge locations, one can extract direct signatures of the existence of fractionalized excitations and nontrivial topology. The broad applicability of this approach is corroborated by a second example of a kagome topological magnon insulator.

DOI: 10.1103/PhysRevB.102.134423

Disorder-free localization in a simple U (1) lattice gauge theory

I. Papaefstathiou, A. Smith, J. Knolle

Physical Review B 102 (16), 165132 (2020).

Show Abstract

Localization due to the presence of disorder has proven crucial for our current understanding of relaxation in isolated quantum systems. The many-body localized phase constitutes a robust alternative to the thermalization of complex interacting systems, but recently the importance of disorder has been brought into question. A number of disorder-free localization mechanisms have been put forward connected to local symmetries of lattice gauge theories. Here, starting from translationally invariant (1 + 1)-dimensional quantum electrodynamics, we modify the dynamics of the gauge field which allows us to construct a lattice model with a U(1) local gauge symmetry revealing a mechanism of disorder-free localization. We consider two different discretizations of the continuum model resulting in a free-fermion soluble model in one case and an interacting model in the other. We diagnose the localization of our translationally invariant model in the far-from-equilibrium dynamics following a global quantum quench.

DOI: 10.1103/PhysRevB.102.165132

Dynamics of a Two-Dimensional Quantum Spin-Orbital Liquid: Spectroscopic Signatures of Fermionic Magnons

W.M.H. Natori, J. Knolle

Physical Review Letters 125 (6), 067201 (2020).

Show Abstract

We provide an exact study of dynamical correlations for the quantum spin-orbital liquid phases of an SU(2)-symmetric Kitaev honeycomb lattice model. We show that the spin dynamics in this Kugel-Khomskii type model is exactly the density-density correlation function of S = 1 fermionic magnons, which could be probed in resonant inelastic x-ray scattering experiments. We predict the characteristic signatures of spin-orbital fractionalization in inelastic scattering experiments and compare them to the ones of the spin-anisotropic Kitaev honeycomb spin liquid. In particular, the resonant inelastic x-ray scattering response shows a characteristic momentum dependence directly related to the dispersion of fermionic excitations. The neutron scattering cross section displays a mixed response of fermionic magnons as well as spin-orbital excitations. The latter has a bandwidth of broad excitations and a vison gap that is three times larger than that of the spin-1 = 2 Kitaev model.

DOI: 10.1103/PhysRevLett.125.067201

Quantum Many-Body Scars in Optical Lattices

H.Z. Zhao, J. Vovrosh, F. Mintert, J. Knolle

Physical Review Letters 124 (16), 160604 (2020).

Show Abstract

The concept of quantum many-body scars has recently been put forward as a route to describe weak ergodicity breaking and violation of the eigenstate thermalization hypothesis. We propose a simple setup to generate quantum many-body scars in a doubly modulated Bose-Hubbard system which can be readily implemented in cold atomic gases. The dynamics are shown to be governed by kinetic constraints which appear via density-assisted tunneling in a high-frequency expansion. We find the optimal driving parameters for the kinetically constrained hopping which leads to small isolated subspaces of scared eigenstates. The experimental signatures and the transition to fully thermalizing behavior as a function of driving frequency are analyzed.

DOI: 10.1103/PhysRevLett.124.160604

Electronic Properties of alpha-RuCl3 in Proximity to Graphene

S. Biswas, Y. Li, S. Winter, J. Knolle, R. Valentí

Physical Review Letters 123 (23), 237201 (2019).

Show Abstract

In the pursuit of developing routes to enhance magnetic Kitaev interactions in alpha-RuCl3, as well as probing doping effects, we investigate the electronic properties of alpha-RuCl3 in proximity to graphene. We study alpha-RuCl3/graphene heterostructures via ab initio density functional theory calculations, Wannier projection, and nonperturbative exact diagonalization methods. We show that alpha-RuCl3 becomes strained when placed on graphene and charge transfer occurs between the two layers, making alpha-RuCl3 (graphene) lightly electron doped (hole doped). This gives rise to an insulator-to-metal transition in alpha-RuCl3 with the Fermi energy located close to the bottom of the upper Hubbard band of the t(2g) manifold. These results suggest the possibility of realizing metallic and even exotic superconducting states. Moreover, we show that in the strained alpha-RuCl3 monolayer the Kitaev interactions are enhanced by more than 50% compared to the unstrained bulk structure. Finally, we discuss scenarios related to transport experiments in alpha-RuCl3/graphene heterostructures.

DOI: 10.1103/PhysRevLett.123.237201

Period-n Discrete Time Crystals and Quasicrystals with Ultracold Bosons

A. Pizzi, J. Knolle, A. Nunnenkamp

Physical Review Letter 123 (15), 150601 (2019).

Show Abstract

We investigate the out-of-equilibrium properties of a system of interacting bosons in a ring lattice. We present a Floquet driving that induces clockwise (counterclockwise) circulation of the particles among the odd (even) sites of the ring which can be mapped to a fully connected model of clocks of two counterrotating species. The clocklike motion of the particles is at the core of a period-n discrete time crystal where L = 2n is the number of lattice sites. In the presence of a "staircaselike" on-site potential, we report the emergence of a second characteristic timescale in addition to the period n-tupling. This new timescale depends on the microscopic parameters of the Hamiltonian and is incommensurate with the Floquet period, underpinning a dynamical phase we call "time quasicrystal." The rich dynamical phase diagram also features a thermal phase and an oscillatory phase, all of which we investigate and characterize. Our simple, yet rich model can be realized with state-of-the-art ultracold atoms experiments.

DOI: 10.1103/PhysRevLett.123.150601

Accept privacy?

Scroll to top