
Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains
J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, and C. Gross
Science 10, 186-189 (2020).
Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.

Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices
C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, M. Aidelsburger.
Nature Physics (2019).
Quantum simulation has the potential to investigate gauge theories in strongly-interacting regimes, which are up to now inaccessible through conventional numerical techniques. Here, we take a first step in this direction by implementing a Floquet-based method for studying Z2 lattice gauge theories using two-component ultracold atoms in a double-well potential. For resonant periodic driving at the on-site interaction strength and an appropriate choice of the modulation parameters, the effective Floquet Hamiltonian exhibits Z2 symmetry. We study the dynamics of the system for different initial states and critically contrast the observed evolution with a theoretical analysis of the full time-dependent Hamiltonian of the periodically-driven lattice model. We reveal challenges that arise due to symmetry-breaking terms and outline potential pathways to overcome these limitations. Our results provide important insights for future studies of lattice gauge theories based on Floquet techniques.

Classifying snapshots of the doped Hubbard model with machine learning
A. Bohrdt, C. S. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E. Demler, F. Grusdt und M. Knap.
Nature Physics (2019).
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi–Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type (1,2), and the geometric string theory (3,4), describing a state with hidden spin order. This technique considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory that is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.

Observation of many-body localization in an one-dimensional system with a single-particle mobility edge
T. Kohlert, S. Scherg, X. Li, H.P. Lüschen, S. Das Sarma, I. Bloch, M. Aidelsburger.
Physical Review Letters 122, 170403 (2019).
We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the time evolution of an initial charge density wave after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL when the corresponding noninteracting model is deep in the localized phase. We also critically compare and contrast our results with those from a tight-binding Aubry-André model, which does not exhibit a single-particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.