Friedemann Reinhard

Quantum Sensing

Technical University Munich

Walter Schottky Institute

Am Coulombwall 4

85745 Garching

Group Webpage


Research focus: quantum sensing, NMR spectroscopy, NV centers

Nuclear magnetic resonance spectroscopy of nanoscale samples

As its core goal, the group aims to perform nuclear magnetic resonance (NMR) spectroscopy on single biomolecules by employing a single NV center in diamond to detect the NMR signal.

This ambitious goal appears to be within reach, since proof-of-principle demonstrations have shown that this scheme is sufficiently sensitive to detect NMR signals from a volume as small as a single macromolecule [1,2]. Building on this result, the group now aims at performing relevant spectroscopy on nanoscale objects, such as structure determination of molecules.

[1] T. Staudacher et al., Science 339, 561 (2013)
[2] H.J. Mamin et al., Science 339, 557 (2013)

Decoherence of spin qubits in a soft matter environment

Sensing applications require NV centers to be placed in close proximity to nanoscale objects such as biomolecules, where they are subject to strong decoherence from fluctuating charges and spins. Considerable work in the group is directed towards identifying these sources and mitigating their impact by suitable measurement protocols. We equally work towards using decoherence as a novel signal source in sensing experiments.

[3] F. Reinhard et al., Phys. Rev. Lett. 108, 200402 (2012)

Quantum sensoring protocols

We also work on novel protocols to sensitize our sensor to different physical quantities or to render it robust against unwanted fluctuations of experimental parameters. This includes e.g. optimal control protocols to enable robust measurements in presence of fluctuations on the laser and microwave excitation sources. In the future, we plan to study schemes that exploit quantum features such as the use of single nuclear spins as quantum memories to store measurement results.

[4] T. Häberle et al., Phys. Rev. Lett. 111, 170801 (2013)

Accept privacy?

Scroll to top