Frank_Deppe

Technical Physics

Technical University of Munich, Walther Meißner Institute

Walther-Meißner-Institute for Low Temperature Research

Walther-Meißner-Institut

85748 Garching

frank.deppe[at]wmi.badw.de

Group webpage

Publications

Lokales Quantennetzwerk für Alice und Bob

F. Deppe, K.G. Fedorov, A. Marx

Akadmie Aktuell Heft 2 (74), 36-38 (2021).

Show Abstract

Vom wissenschaftlichen Nischenthema zum international anerkannten Forschungsfeld: Quantenmikrowellen eröffnen viele Anwendungsperspektiven, für die sich auch die Industrie interessiert.

ISSN 1436 -753X

In-situ tunable nonlinearity and competing signal paths in coupled superconducting resonators

M. Fischer, Q.-M. Chen, C. Besson, P. Eder, J. Goetz, S. Pogorzalek, M. Renger, E. Xie, M.J. Hartmann, K.G. Fedorov, A. Marx, F. Deppe, R. Gross

Physical Review B 103, 94515 (2021).

Show Abstract

We have fabricated and studied a system of two tunable and coupled nonlinear superconducting resonators. The nonlinearity is introduced by galvanically coupled dc superconducting quantum interference devices. We simulate the system response by means of a circuit model, which includes an additional signal path introduced by the electromagnetic environment. Furthermore, we present two methods allowing us to experimentally determine the nonlinearity. First, we fit the measured frequency and flux dependence of the transmission data to simulations based on the equivalent circuit model. Second, we fit the power dependence of the transmission data to a model that is predicted by the nonlinear equation of motion describing the system. Our results show that we are able to tune the nonlinearity of the resonators by almost two orders of magnitude via an external coil and two on-chip antennas. The studied system represents a basic building block for larger systems, allowing for quantum simulations of bosonic many-body systems with a larger number of lattice sites.

DOI: 10.1103/PhysRevB.103.094515

Erste Demonstration von Quantenüberlegenheit

M.J. Hartmann, F. Deppe

Physik in unserer Zeit 52, 12 (2021).

Show Abstract

Mit dem Sycamore-Quantenprozessor von Google gelang zum ersten Mal überzeugend ein Experiment, in dem ein Quantensystem ein Problem besser löst als derzeit verfügbare herkömmliche Supercomputer. Die Hardware basiert auf der Technologie der supraleitenden Quantenschaltkreise. Ihr wird schon länger ein besonders großes Skalierungspotenzial hin zu mehr Quantenbits bescheinigt. Der verwendete Chip besitzt 53 Qubits. Sie sind in einem zweidimensionalen quadratischen Gitter angeordnet und durch Nächste-Nachbar-Wechselwirkung gekoppelt. Somit stellt das Experiment einen großen technologischen Fortschritt für das gesamte Feld der Quantenwissenschaften und -technologien dar. Obwohl der praktische Nutzen derzeit noch gering erscheint, sind die Arbeiten des Google-Teams ein wichtiger Schritt hin zu skalierbarem Quantenrechnen. Damit erscheint erstmals eine fehlerkorrigierte, supraleitende Quantencomputer-Architektur in nicht allzu ferner Zukunft möglich.

DOI: 10.1002/piuz.202001587

Sideband-resolved resonator electromechanics based on a nonlinear Josephson inductance probed on the single-photon level

P. Schmidt, M.T. Amawi, S. Pogorzalek, F. Deppe, A. Marx, R. Gross, H. Huebl

Communication Physics 3 (1), 233 (2020).

Show Abstract

Light-matter interaction in optomechanical systems is the foundation for ultra-sensitive detection schemes as well as the generation of phononic and photonic quantum states. Electromechanical systems realize this optomechanical interaction in the microwave regime. In this context, capacitive coupling arrangements demonstrated interaction rates of up to 280Hz. Complementary, early proposals and experiments suggest that inductive coupling schemes are tunable and have the potential to reach the single-photon strong-coupling regime. Here, we follow the latter approach by integrating a partly suspended superconducting quantum interference device (SQUID) into a microwave resonator. The mechanical displacement translates into a time varying flux in the SQUID loop, thereby providing an inductive electromechanical coupling. We demonstrate a sideband-resolved electromechanical system with a tunable vacuum coupling rate of up to 1.62kHz, realizing sub-aNHz(-1/2) force sensitivities. The presented inductive coupling scheme shows the high potential of SQUID-based electromechanics for targeting the full wealth of the intrinsically nonlinear optomechanics Hamiltonian. Recently, inductively-coupled optomechanical systems have been realized. They represent an important step forward towards achieving strong light-matter interaction, offer extreme sensitivity to mechanical displacement, and allow to study quantum phenomena on a single quantum level. In this work, a superconducting device is inductively coupled to a microwave resonator forming an electromechanical system operating at the single-photon level.

DOI: 10.1038/s42005-020-00501-3

Secure quantum remote state preparation of squeezed microwave states

S. Pogorzalek, K. G. Fedorov, M. Xu, A. Parra-Rodriguez, M. Sanz, M. Fischer, E. Xie, K. Inomata, Y. Nakamura, E. Solano, A. Marx, F. Deppe, R. Gross.

Nature Communications 10, 2604 (2019).

Show Abstract

Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. Finally, security of remote state preparation is investigated by using the concept of the one-time pad and measuring the von Neumann entropies. We find nearly identical values for the entropy of the remotely prepared state and the respective conditional entropy given the classically communicated information and, thus, demonstrate close-to-perfect security.

DOI:10.1063/1.5052414

Accept privacy?

Scroll to top