Fabian Grusdt standing in front of a blackboard filled with formulas.

START Fellow

Ludwig-Maximilians-Universität München

Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC) | LMU München

Theresienstr. 37

80799 Munich

Tel. +49 89 2180 4125

Fabian.Grusdt[at]physik.uni-muenchen.de

Research website

Looking at strongly correlated quantum systems in microscopic detail is like taking a look at a new corner of the universe and staring at the machinery of quantum mechanics.

Description

As START fellow, I will make full use of the MCQST network and pursue theoretical projects, which are closely connected, to on-going experiments. For example, we will optimize trial states for describing quantum magnets at elevated temperatures, as realized in the laboratories. Especially in the context of strong frustration, this approach will become important because it enables theoretical interpretations of the experiments. In another part of my work, we will develop new cooling schemes for quantum spin systems in optical lattices.

The problems I will address are related to my previous work, but they also contain significant new elements. While some aspects may appear technical at first, they have the potential to make all the difference in coming up with appealing physical explanations of the upcoming experimental observations.


Featured on the Quantum Science Blog: Profile article on Fabian Grusdt and his passion for physics.

Publications

Coupling a mobile hole to an antiferromagnetic spin background: Transient dynamics of a magnetic polaron

G. Ji, M. Xu, L.H. Kendrick, C.S. Chiu, J.C. Brüggenjürgen, D. Greif, A. Bohrdt, F. Grusdt, E. Demler, M. Lebrat, M. Greiner

Physical Review X 11, 21022 (2021).

Show Abstract

Understanding the interplay between charge and spin and its effects on transport is a ubiquitous challenge in quantum many-body systems. In the Fermi-Hubbard model, this interplay is thought to give rise to magnetic polarons, whose dynamics may explain emergent properties of quantum materials such as high-temperature superconductivity. In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons. Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background, indicating polaron formation. At long times, we find that dynamics are slowed down by the spin exchange time, and they are compatible with a polaronic model with strong density and spin coupling. Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.

DOI: 10.1103/PhysRevX.11.021022

Radiofrequency spectroscopy of one-dimensional trapped Bose polarons: crossover from the adiabatic to the diabatic regime

S. I. Mistakidis, G. M. Koutentakis, F. Grusdt, H. R. Sadeghpour, P. Schmelcher

New Journal of Physics 23, 43051 (2021).

Show Abstract

We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (RF) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak repulsive or attractive impurity-medium interactions, a multitude of polaronic excitations or mode-couplings of the impurity-bath interaction with the collective breathing motion of the bosonic medium are spectrally resolved. We find that for strongly repulsive impurity-bath interactions, a temporal orthogonality catastrophe manifests in resonances in the excitation spectra where impurity coherence vanishes. When two impurities are introduced, impurity–impurity correlations, for either attractive or strong repulsive couplings, induce a spectral shift of the resonances with respect to the single impurity. For a heavy impurity, the polaronic peak is accompanied by a series of equidistant side-band resonances, related to interference of the impurity spin dynamics and the sound waves of the bath. In all cases, we enter the diabatic transfer regime for an increasing bare Rabi frequency of the RF field with a Lorentzian spectral shape featuring a single polaronic resonance. The findings in this work on the effects of external trap, RF pulse and impurity–impurity interaction should have implications for the new generations of cold-atom experiments.

DOI: 10.1088/1367-2630/abe9d5

Bosonic Pfaffian State in the Hofstadter-Bose-Hubbard Model

F. A. Palm, M. Buser, J. Léonard, M. Aidelsburger, U. Schollwöck, F. Grusdt

Physical Review B 103, L161101 (2021).

Show Abstract

Topological states of matter, such as fractional quantum Hall states, are an active field of research due to their exotic excitations. In particular, ultracold atoms in optical lattices provide a highly controllable and adaptable platform to study such new types of quantum matter. However, finding a clear route to realize non-Abelian quantum Hall states in these systems remains challenging. Here we use the density-matrix renormalization-group (DMRG) method to study the Hofstadter-Bose-Hubbard model at filling factor ν=1 and find strong indications that at α=1/6 magnetic flux quanta per plaquette the ground state is a lattice analog of the continuum non-Abelian Pfaffian. We study the on-site correlations of the ground state, which indicate its paired nature at ν=1, and find an incompressible state characterized by a charge gap in the bulk. We argue that the emergence of a charge density wave on thin cylinders and the behavior of the two- and three-particle correlation functions at short distances provide evidence for the state being closely related to the continuum Pfaffian. The signatures discussed in this letter are accessible in current cold atom experiments and we show that the Pfaffian-like state is readily realizable in few-body systems using adiabatic preparation schemes.

DOI: 10.1103/PhysRevB.103.L161101

Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets

A. Bohrdt, Y. Wang, J. Koepsell, M. Kanasz-Nagy, E. Demler, F. Grusdt.

Physical Review Letters 126 (2), 026401 (2021).

Show Abstract

Traditionally, one- and two-point correlation functions are used to characterize many-body systems. In strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may no longer be sufficient, because higher-order correlations are crucial to understanding the character of the many-body system and can be numerically dominant. Experimentally, such higher-order correlations have recently become accessible in ultracold atom systems. Here, we reveal strong non-Gaussian correlations in doped quantum antiferromagnets and show that higher-order correlations dominate over lower-order terms. We study a single mobile hole in the t - J model using the density matrix renormalization group and reveal genuine fifth-order correlations which are directly related to the mobility of the dopant. We contrast our results to predictions using models based on doped quantum spin liquids which feature significantly reduced higher-order correlations. Our predictions can be tested at the lowest currently accessible temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally, we propose to experimentally study the same fifth-order spin-charge correlations as a function of doping. This will help to reveal the microscopic nature of charge carriers in the most debated regime of the Hubbard model, relevant for understanding high-T-c superconductivity.

DOI: 10.1103/PhysRevLett.126.026401

Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet

A. Bohrdt, F. Grusdt, M. Knap

New Journal of Physics 22 (12), 123023 (2020).

Show Abstract

Tremendous recent progress in the quantum simulation of the Hubbard model paves the way to controllably study doped antiferromagnetic Mott insulators. Motivated by these experimental advancements, we numerically study the real-time dynamics of a single hole created in an antiferromagnet on a square lattice, as described by the t-J model. Initially, the hole spreads ballistically with a velocity proportional to the hopping matrix element. At intermediate to long times, the dimensionality as well as the spin background determine the hole dynamics. A hole created in the ground state of a two dimensional (2D) quantum antiferromagnet propagates again ballistically at long times but with a velocity proportional to the spin exchange coupling, showing the formation of a magnetic polaron. We provide an intuitive explanation of this dynamics in terms of a parton construction, which leads to a good quantitative agreement with the numerical tensor network state simulations. In the limit of infinite temperature and no spin exchange couplings, the dynamics can be approximated by a quantum random walk on a Bethe lattice with coordination number

z

x303;

4

Adding Ising interactions corresponds to an effective disordered potential, which can dramatically slow down the hole propagation, consistent with subdiffusive dynamics. The study of the hole dynamics paves the way for understanding the microscopic constituents of this strongly correlated quantum state.

DOI: 10.1088/1367-2630/abcfee

Skyrmion Ground States of Rapidly Rotating Few-Fermion Systems

L. Palm, F. Grusdt, P. M. Preiss

New Journal of Physics 22, 83037 (2020).

Show Abstract

We show that ultracold fermions in an artificial magnetic field open up a new window to the physics of the spinful fractional quantum Hall (FQH) effect. We numerically study the lowest energy states of strongly interacting few-fermion systems in rapidly rotating optical microtraps. We find that skyrmion-like ground states with locally ferromagnetic, long-range spin textures emerge. To realize such states experimentally, rotating microtraps with higher-order angular momentum components may be used to prepare fermionic particles in a lowest Landau level. We find parameter regimes in which skyrmion-like ground states should be accessible in current experiments and demonstrate an adiabatic pathway for their preparation in a rapidly rotating harmonic trap. The addition of long range interactions will lead to an even richer interplay between spin textures and FQH physics.

DOI: 10.1088/1367-2630/aba30e

Fractional corner charges in a 2D super-lattice Bose-Hubbard model

J. Bibo, I. Lovas, Y. You, F. Grusdt, F. Pollmann

Physical Review B 102, 041126 (R) (2020).

Show Abstract

We study higher order topology in the presence of strong interactions in a two-dimensional, experimentally accessible superlattice Bose-Hubbard model with alternating hoppings and strong on-site repulsion. We evaluate the phase diagram of the model around half-filling using the density renormalization group ansatz and find two gapped phases separated by a gapless superfluid region. We demonstrate that the gapped states realize two distinct higher order symmetry protected topological phases, which are protected by a combination of charge conservation and C4 lattice symmetry. The phases are distinguished in terms of a many-body topological invariant and a quantized, experimentally accessible fractional corner charge that is robust against arbitrary, symmetry preserving edge manipulations. We support our claims by numerically studying the full counting statistics of the corner charge, finding a sharp distribution peaked around the quantized values. Our results allow for a direct comparison with experiments and represent a confirmation of theoretically predicted higher order topology in a strongly interacting system. Experimentally, the fractional corner charge can be observed in ultracold atomic settings using state of the art quantum gas microscopy.

DOI: 10.1103/PhysRevB.102.041126

Parton theory of angle-resolved photoemission spectroscopy spectra in antiferromagnetic Mott insulators

A. Bohrdt, E: Demler, F. Pollmann, M. Knap, F. Grusdt

Physical Review B 102 (3), 035139 (2020).

Show Abstract

Angle-resolved photoemission spectroscopy (ARPES) has revealed peculiar properties of mobile dopants in correlated antiferromagnets (AFMs). But, describing them theoretically, even in simplified toy models, remains a challenge. Here, we study ARPES spectra of a single mobile hole in the t-J model. Recent progress in the microscopic description of mobile dopants allows us to use a geometric decoupling of spin and charge fluctuations at strong couplings, from which we conjecture a one-to-one relation of the one-dopant spectral function and the spectrum of a constituting spinon in the undoped parent AFM. We thoroughly test this hypothesis for a single hole doped into a two-dimensional Heisenberg AFM by comparing our semianalytical predictions to previous quantum Monte Carlo results and our large-scale time-dependent matrix product state calculations of the spectral function. Our conclusion is supported by a microscopic trial wave function describing spinon-chargon bound states, which captures the momentum and t/J dependence of the quasiparticle residue. From our conjecture we speculate that ARPES measurements in the pseudogap phase of cuprates may directly reveal the Dirac-fermion nature of the constituting spinons. Specifically, we demonstrate that our trial wave function provides a microscopic explanation for the sudden drop of spectral weight around the nodal point associated with the formation of Fermi arcs, assuming that additional frustration suppresses long-range AFM ordering. We benchmark our results by studying the crossover from two to one dimension, where spinons and chargons are confined and deconfined, respectively.

DOI: 10.1103/PhysRevB.102.035139

Ramsey interferometry of non-Hermitian quantum impurities.

F. Tonielli, N. Chakraborty, F. Grusdt, J. Marino

Physical Review Research 2, 032003 (R) (2020).

Show Abstract

We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated with an arbitrary Lindblad dynamics. We propose a related protocol to measure via interferometry a generalized Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect: Corrections to the decoherence exponent resulting from the impurity self-energy become purely imaginary, in contrast to the regime of small dissipation where they instead enhance the decay of quantum coherences. Our results illustrate the prospects for experiments employing Ramsey interferometry to study dissipative quantum impurities in condensed matter and cold-atom systems.

DOI: 10.1103/PhysRevResearch.2.032003

Confined Phases of One-Dimensional Spinless Fermions Coupled to Z(2) Gauge Theory

U. Borla, R. Verresen, F. Grusdt, S. Moroz

Physical Review Letters 124 (12), 120503 (2020).

Show Abstract

We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical Z(2) gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the density matrix renormalization group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling 2/3.

DOI: 10.1103/PhysRevLett.124.120503

Z2 characterization for three-dimensional multiband Hubbard models

B. Irsigler, J. Zheng, F. Grusdt, W. Hofstetter

Physical Review Research 2, 13299 (2020).

Show Abstract

We introduce three numerical methods for characterizing the topological phases of three-dimensional multiband Hubbard models based on twisted boundary conditions, Wilson loops, as well as the local topological marker. We focus on the half-filled, three-dimensional time-reversal-invariant Hofstadter model with finite spin-orbit coupling. Besides the weak and strong topological insulator phases we find a nodal line semimetal in the parameter regime between the two three-dimensional topological insulator phases. Using dynamical mean-field theory combined with the topological Hamiltonian approach we find stabilization of these three-dimensional topological states due to the Hubbard interaction. We study surface states which exhibit an asymmetry between left and right surfaces originating from the broken parity symmetry of the system. Our results set the stage for further research on inhomogeneous three-dimensional topological systems, proximity effects, topological Mott insulators, nontrivially linked nodal line semimetals, and circuit-based quantum simulators.

DOI: 10.1103/PhysRevResearch.2.013299

Multiparticle interactions for ultracold atoms in optical tweezers: Cyclic ring-exchange terms

A. Bohrdt, A. Omran, E. Demler, S. Gazit, F. Grusdt

Physical Review Letters 124, 73601 (2020).

Show Abstract

Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose a protocol showing how SU(N)-invariant multibody interactions can be implemented in optical tweezer arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder geometry. We study its phase diagram using density-matrix renormalization group simulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly frustrated J–Q model, a candidate for hosting a deconfined quantum critical point.

DOI: 10.1103/PhysRevLett.124.073601

Confined phases of one-dimensional spinless fermions coupled to Z2 gauge theory

U. Borla, R. Verresen, F. Grusdt, S. Moroz.

Physics Review Letters 124, 120503 (2020).

Show Abstract

We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical Z2 gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the Density Matrix Renormalization Group the system is shown to form a Luttinger liquid, indicating the emergence of fermionic fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling 2/3.

DOI: 10.1103/PhysRevLett.124.120503

Evaluation of time-dependent correlators after a local quench in iPEPS: hole motion in the t - J model

C. Hubig, A: Bohrdt, M. Knap, F. Grusdt, J.I. Cirac

Scipost Physics 8 (2), 021 (2020).

Show Abstract

Infinite projected entangled pair states (iPEPS) provide a convenient variational description of infinite, translationally-invariant two-dimensional quantum states. However, the simulation of local excitations is not directly possible due to the translationally-invariant ansatz. Furthermore, as iPEPS are either identical or orthogonal, expectation values between different states as required during the evaluation of non-equal-time correlators are ill-defined. Here, we show that by introducing auxiliary states on each site, it becomes possible to simulate both local excitations and evaluate non-equal-time correlators in an iPEPS setting under real-time evolution. We showcase the method by simulating the t - J model after a single hole has been placed in the half-filled antiferromagnetic background and evaluating both return probabilities and spin correlation functions, as accessible in quantum gas microscopes.

DOI: 10.21468/SciPostPhys.8.2.021

Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains

J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, and C. Gross

Science 10, 186-189 (2020).

Show Abstract

Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.

10.1126/science.aay2354

Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z2 lattice gauge theories

L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N. Goldman and F. Grusdt.

Science Advances 5 (10), (2019).

Show Abstract

From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of Z2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields.

DOI: 10.1126/sciadv.aav7444

Dissipative correlated dynamics of a moving bosonic impurity immersed in a Bose-Einstein Condensate

S. I. Mistakidis, F. Grusdt, G. M. Koutentakis, P. Schmelcher

New Journal of Physics 21, 103026 (2019).

Show Abstract

We unravel the nonequilibrium correlated quantum quench dynamics of an impurity traveling through a harmonically confined Bose–Einstein condensate in one-dimension. For weak repulsive interspecies interactions the impurity oscillates within the bosonic gas. At strong repulsions and depending on its prequench position the impurity moves towards an edge of the bosonic medium and subsequently equilibrates. This equilibration being present independently of the initial velocity, the position and the mass of the impurity is inherently related to the generation of entanglement in the many-body system. Focusing on attractive interactions the impurity performs a damped oscillatory motion within the bosonic bath, a behavior that becomes more evident for stronger attractions. To elucidate our understanding of the dynamics an effective potential picture is constructed. The effective mass of the emergent quasiparticle is measured and found to be generically larger than the bare one, especially for strong attractions. In all cases, a transfer of energy from the impurity to the bosonic medium takes place. Finally, by averaging over a sample of simulated in situ single-shot images we expose how the single-particle density distributions and the two-body interspecies correlations can be probed.

DOI: 10.1088/1367-2630/ab4738

Floquet approach to Z2 lattice gauge theories with ultracold atoms in optical lattices

C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, M. Aidelsburger.

Nature Physics 15, 1168-1173 (2019).

Show Abstract

Quantum simulation has the potential to investigate gauge theories in strongly-interacting regimes, which are up to now inaccessible through conventional numerical techniques. Here, we take a first step in this direction by implementing a Floquet-based method for studying Z2 lattice gauge theories using two-component ultracold atoms in a double-well potential. For resonant periodic driving at the on-site interaction strength and an appropriate choice of the modulation parameters, the effective Floquet Hamiltonian exhibits Z2 symmetry. We study the dynamics of the system for different initial states and critically contrast the observed evolution with a theoretical analysis of the full time-dependent Hamiltonian of the periodically-driven lattice model. We reveal challenges that arise due to symmetry-breaking terms and outline potential pathways to overcome these limitations. Our results provide important insights for future studies of lattice gauge theories based on Floquet techniques.

DOI: 10.1038/s41567-019-0649-7

Topological polarons, quasiparticle invariants and their detection in 1D symmetry-protected phases

F. Grusdt, N. Y. Yao, E. A. Demler

Physical Review B 100, 75126 (2019).

Show Abstract

In the presence of symmetries, one-dimensional quantum systems can exhibit topological order, which in many cases can be characterized by a quantized value of the many-body geometric Zak or Berry phase. We establish that this topological Zak phase is directly related to the Zak phase of an elementary quasiparticle excitation in the system. By considering various systems, we establish this connection for a number of different interacting phases including the Su-Schrieffer-Heeger model, p-wave topological superconductors, and the Haldane chain. Crucially, in contrast to the bulk many-body Zak phase associated with the ground state of such systems, the topological invariant associated with quasiparticle excitations (above this ground state) exhibits a more natural route for direct experimental detection. To this end, we build upon recent work [F. Grusdt, et al., Nat. Commun. 7, 11994 (2016)] and demonstrate that mobile quantum impurities can be used, in combination with Ramsey interferometry and Bloch oscillations, to directly measure these quasiparticle topological invariants. Finally, a concrete experimental realization of our protocol for dimerized Mott insulators in ultracold atomic systems is discussed and analyzed.

DOI: 10.1103/PhysRevB.100.075126

String patterns in the doped Hubbard model

C. S. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, D. Greif.

Science 365, 251-256 (2019).

Show Abstract

Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work, we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet, we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.

DOI: 10.1126/science.aav3587

Classifying snapshots of the doped Hubbard model with machine learning

A. Bohrdt, C. S. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E. Demler, F. Grusdt und M. Knap.

Nature Physics 15, 921-924 (2019).

Show Abstract

Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi–Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type (1,2), and the geometric string theory (3,4), describing a state with hidden spin order. This technique considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory that is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.

DOI: 10.1038/s41567-019-0565-x

Accept privacy?

Scroll to top