START Fellow

Technical University Munich

Department of Mathematics

Boltzmannstr. 3

85748 Garching

+49 89 289 17028


Group Website

Quantum information theory provides a simple, yet powerful mathematical playground to better understand and make use of the information content of Nature.


In any realistic setting, a quantum system undergoes unavoidable interactions with its environment. These interactions lead to the phenomenon of decoherence, or alterations of the information initially contained in the system. Within the context of emerging quantum information-processing devices, gaining quantitative knowledge on the effect of decoherence is one of the main near-term challenges for the design of scalable quantum fault-tolerance methods. From a mathematical point of view, information can be quantified by means of entropic quantities, whereas noise is modelled by a quantum channel. My main research consists in quantifying the contraction of entropic measures under the action of a channel. In the case of a Markovian evolution, the latter can be approached by so-called functional inequalities.

Research focus

During the course of my START fellowship, I will develop novel mathematical tools for the precise quantification of the rapidity at which a quantum lattice system reaches its stationary state, and of the corresponding classical and quantum information lost to its environment. In the case of a local Markovian evolution, I will try to address the question of existence of new dynamical phases of matter where certain functional inequalities do not hold any longer, due e.g. to the presence of topological quantum order.

Accept privacy?

Scroll to top